Iteration in Semidefinite Eigenvalue Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

a new inexact inverse subspace iteration for generalized eigenvalue problems

in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Asymptotic iteration method for eigenvalue problems

An asymptotic interation method for solving second-order homogeneous linear differential equations of the form y = λ0(x)y ′ + s0(x)y is introduced, where λ0(x) 6= 0 and s0(x) are C∞ functions. Applications to Schrödinger type problems, including some with highly singular potentials, are presented. PACS 03.65.Ge Asymptotic iteration method for eigenvalue problems page 2

متن کامل

Quasi-Laguerre Iteration in Solving Symmetric Tridiagonal Eigenvalue Problems

In this article, the quasi-Laguerre iteration is established in the spirit of Laguerre's iteration for solving polynomial f with all real zeros. The new algorithm, which maintains the monotonicity and global convergence of the Laguerre iteration, no longer needs to evaluate f". The ultimate convergence rate is + 1. When applied to approximate the eigenvalues of a symmetric tridiagonal matrix, t...

متن کامل

Semidefinite inverse eigenvalue problems with prescribed entries and partial eigendata

In this paper, we study the semidefinite inverse eigenvalue problem of reconstructing a real n-by-n matrix C such that it is nearest to the original pre-estimated real n-by-n matrix Co in the Frobenius norm and satisfies the measured partial eigendata, where the required matrix C should preserve the symmetry, positive semidefiniteness, and the prescribed entries of the preestimated matrix Co. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Aeronautical Sciences

سال: 1955

ISSN: 1936-9956

DOI: 10.2514/8.3440